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CHAPTER 1

INTRODUCTION

Stochastic theory is a useful tool in the fatigue design of struc-

tures subject to erratic loads from environments such as wind, waves,

earthquakes, etc. The random stress processes which result from such

loads can be described by statistical parameters in models which charac-

terize the material behavior based on laboratory fatigue tests. These

models provide a probabilistic estimate of the number of cycles, or

length of time, to failure of the structure.

Two approaches have been used in applying probability theory to

fatigue life prediction. In the first, simplifying assumptions are

made about the distribution of the extrema of the random stress process

which results in a closed-form solution for the expected number of

cycles or length of time to failure. The second approach computes

the necessary statistics of the extrema distribution using a computer

simulated random process which is statistically similar to the expected

service stress time history.

In the past, the design engineer has typically chosen to use the

first approach because it is an inexpensive, simple calculation which

is generally thought to result in a conservative prediction of fatigue

life. However, recent studies (5,21,41,43) have shown that this approach

can often be very overconservative and uneconomical, and may even be

unconservative for some cases.

The simulation technique is thought to give a more accurate predic-

tion of fatigue life and generally to result in a more economical struc-



tural design, but it requires expensive computer time during the design

and analysis.

This thesis is an investigation of a technique for more efficiently

simulating a random stress time history for fatigue analysis. Current

simulation techniques synthesize the complete randomstress time history,

while for fatigue analysis only statistics of the extrema are required.

Thus, a significant reduction in computation time and cost could be

realized if the correctly distributed extrema could be generated

directly, without the need for superfluous intermediate values. Previous

research by others (43) in this area resulted in such improved tech-

niques applicable to simple, idealized cases. The present work examines

an extrema generating technique which can be applied to a wider variety

of more realistic cases. The development of this technique has led

to new insights about which characteristics of a random stress process

are important to the fatigue problem.

Chapter 2 is a brief review of some of the theory of stochastic

processes and fatigue theory as it relates to this investigation.

The most popular current simulation technique and the general theory

behind the proposed technique are also discussed. The results of an

extensive simulation study of extrema correlations and power spectral

density truncation effects are presented in Chapter 3. A proposed

extrema simulation technique for random processes having a unimodal

power spectral density is discussed in Chapter 4. The adaptation of

this technique to bimodal power spectral densities is described in

Chapter 5. Chapter 6 summarizesthe important results of this study.



CHAPTER2

BACKGROUND

This chapter presents the background material in probability,

fatigue, and simulation which relates to this investigation. Section

2.1 reviews the fundamentals of stochastic processes and the statistics

which pertain to fatigue studies. Section 2.2 presents the concept

of accumulated damageand the extension of constant amplitude fatigue

theory to random fatigue. Section 2.3 introduces the simulation of

stochastic processes, and section 2.4 presents the basic theory of

the simulation technique studied in this investigation.

2.1 Stochastic Processes

A stochastic or random process {X(t)} is a family or set of ordered

random variables X(t). The parameter t often denotes time in physical

processes, but can also denote distance or location, or any parameter

which orders the occurrence of the random variables. A random process

is partially described by the probability density function (PDF) of

X(t), Px(t;u). The first two momentsof Px(t;u) are the mean, _x(t),

and variance, Ox2(t), of the process. A more complete description

of the process would include the joint distribution of X(t) and X(s),

Pxx(t,s;u,v), from which one can find the autocorrelation function,

@xx(t,s) _ E[X(t)X(s)], and the autocovariance function, Kxx(t,s )

@xx(t,s) - _x(t)_x(S). In general, a random process can only be com-

pletely described by knowledge of an infinite number of multivariate

distributions.

A more intuitive definition of a random process is that it is

the collection or ensemble of all the possible time histories one might

3



observe of a randomly varying quantity. An example would be the set

of 5 minute wave records observed at an offshore platform. A single

record from this set is but one realization from the infinite ensemble

of possible records.

A random process is said to be stationary if the choice of the

"time" origin can be made arbitrarily without effecting the statistics

of interest. A particularly useful type of stationarity often assumed

is covariant stationarity, defined by the conditions:

a) _x(t) : _X : constant

b) Kxx(t,s) = Fxx(S-t) = FXX(T)

(>i)

(2-2)

The second condition above describes a "shift" property for the autoco-

variance: the value of the autocovariance depends only on the time

interval between points, s-t = T, and not on the individual times of

occurrence. These two conditions imply that the autocorrelation function

also exhibits the "shift" property:

c) @xx(t,s) = Rxx(S-t) = RXX(T) (2-3)

A stationary random process is referred to as being ergodic if

averages taken in the time domain for a single realization converge

to the corresponding statistical averages taken across the entire

ensemble. That is, one infinite length realization of the process

completely describes the entire ensemble. A stationary process is

usually assumed to be ergodic, unless it is obviously not ergodic.

The information contained in the autocorrelation function, Rxx(T),

of a mean-zero, covariant stationary process is often expressed in



a different form as the power spectral density, (psd), of the process

(20,22). The psd SXX(m)is the Fourier transform of Rxx(T):

O0

1 imT
Sxx(_) : _ f RXX(T)e- dT (2-4)

wOO

The inverse transformation is:

O0

RXX(T) = f SXX(m)e ImT dm (2-5)
wOO

Note that in these equations and those which follow, SXX(m) is

the two-sided psd defined on (-co, +_o), while the one-sided psd, defined

on (0, +_), is given by GX(m) = 2Sxx(m ). The variance of the process,

2
ox, is given by the autocorrelation at T = O, or the area under the

psd:

O0

2
ox = E[X 2] : Rxx(O) = _ Sxx(m)dw (2-6)

mOO

The variance of the first two derivatives of {X(t)} are given by:

CO

°X2"=_coF2Sxx(_)d_ (2-7)

2 °_4Sx XoR : I (_)dm (2-8)
mOO

The expected number of up-crossings per unit time of the level

b by {X(t)} was derived by S.O. Rice (32) as:

CO

+

9b = f v px_(b,v)dv (2-9)
0

in which pX_(U,V) is the joint PDF of {X(t)} and {X(t)} at time t.

The rate of up-crossings of the mean (or zero up-crossings) is

then:

÷
=T VPx£(O,v)dv (2-10)

0



The above result leads to an expression for the expected number

of valleys (or peaks) per unit time of {X(t)} as:

= f wp_R(O,w)dw (2-11)
np o

The ratio of the rate of zero up-crossings to the rate of peak

+

occurrences, _o/np, is a common measure of bandwidth known as the irregu-

larity factor. The value of the irregularity factor is always between

0 and 1 (because np_), and approaches I for a very narrowband process

as the number of peaks approaches the number of zero up-crossings.

A random process {X(t)} is said to be Gaussian (or normal) if

the set {X(tl), X(t2),..-X(tn)} is a set of jointly normal random vari-

ables for any choice of n and (tl,t2,.--tn). This implies that a

Gaussian random process is completely described by its mean, Nx(t),

and autocovariance, Kxx(t,s). Further, it can be shown that {X(t)}

will also be a normal process and that {X(t)} and {X(t)} are jointly

normal processes. If the Gaussian process {X(t)} is also assumed to

be covariant stationary, then X(t) and X(t) are independent random

variables.

Random processes are often assumed to be Gaussian or normal in

random vibration problems because analytical manipulations are relatively

easy and many actual excitations can be well approximated as being

Gaussian.

Assuming that {X(t)} is Gaussian (in addition to mean-zero,

+
covariant stationary) enables one to evaluate the expressions for _o

and n as (7,20,23):
P

6



+ _ i o_ (2-12)
_o 27 aX

_ l°X

np 27 a_ (2-13)

This yields an expression for the irregularity factor of a Gaussian

process:

+ .2

_o °X

np aX oR

÷

The irregularity factor, as defined by _o/np,

measure of the bandwidth of a random process.

(2-14)

is a time domain

A set of frequency domain

bandwidth parameters may be defined by the equation:

in which _j is the jth moment of the psd:

f _JGx(_)d_
_J = -0

(2-15)

(2-16)

It can be shown that for any j > O,

i for the limiting narrowband case.

and (2-8), the bandwidth parameter _2 from this family is given by:

.2
_2 OX

D

_2 112 OXaR
[_o_4 ]

÷

Thus, for a covariant stationary, Gaussian process, e2 = Vo/np'

the irregularity factor has both a time and a frequency

0 _< mj __ 1, with mj app_h_ng._...

Recalling equations (2-6), (2-7)

(2-17)

and

domain

definition.

Another commonly used bandwidth parameter related to the ej family

is the parameter q proposed by Vanmarcke (40):



_ ]i/2 (2-18)q = [I - _111/22= [I
_o_2

The values of q are also bounded by [0,1], but q approaches zero for

the limiting narrowband case. Vanmarcke showed that this parameter

also has a time domain interpretation. Based on the definition of

the envelope of a random process used by Cramer and Leadbetter (6)

and S.O. Rice (32), q can be defined in the time domain as:

(2-19)
q - o_

in which:

o_ = The rms of the slope of the process

a_ = The rms of the slope of its envelope

Thus, q is the ratio of the rate of change of the envelope to the rate

of change of the process. This interpretation breaks down for wideband

processes as the envelope is no longer physically recognizable.

For a Gaussian random process, the probability density function

(pdf) and cumulative distribution function (cdf) of the extrema (peaks

or valleys) were derived by S.O. Rice (32) as:

_ ue2 ue2 2

PDF: fp(U) 2a_ [1 + erf (OX(2 - 2_2)I/2)]exp(_2)22aX

1-e_ I/2 -u2

+ (_) exp( 2 2

2_a X 2Ox( 1-_2)

) -_<u<_ (2-20)

8



CDF: Fp(U) = _ erfc[. -u
(2-2_)I/2o X]

e2 u2 -u e2
-- exp(_-_)erfc[ ]

2 2oX (2_2e_)I/2oX

in which erf is the error function:

(2-21)

2 _ e-t 2 dt (2-22a)
erf(u) = _ o

erf(_) = 1.0 (2.22b)

and erfc is the complementary error function:

erfc(u) = i - erf(u) (2-23)

The S.O. Rice distribution is a function of only the standard

deviation of the process, oX, and the bandwidth of the process as defined

by the irregularity factor, e2" The cumulative distribution function

(cdf), Fp(U), gives the fraction of all peaks which have values less

than u, including negative as well as positive peaks. The fraction

of positive peaks is (I + e2)/2 and the rate at which they occur is:

(1 ) oR
+ = I e2) - 4_ _XX (2-24)np np ( + _2

In the limiting narrowband case (e2 -_ 1) all of the peaks are positive

and the S.O. Rice distribution reduces to the Rayleigh distribution:

:---_up exp('--_u2_) o < u < _ (2-25)fp(U)
o_ ^_2aX

For the limiting wideband process (e2 ÷ O) only one-half of the peaks

are positive and the S.O. Rice distribution reduces to the Gaussian

distribution:



_,2I
exp(--_) -_ < u < _ (2-26)

fp(U) - )I/2oX(2_ 2oX

2.2 Concepts in Fatigue

The results of a laboratory constant amplitude fatigue test are

usually presented in the form of a plot of the logarithm of the stress

range, S, versus the logarithm of the number of cycles to failure,

N, as in Figure 2.1. The test data is usually best fit by a straight

line, the S-N curve, given by the equation:

N = CS-m (2-27)

in which C and m are material constants. The S-N curve for ferrous

materials tails off at some low stress range known as the endurance

limit. This is the stress range at or below which the material is

treated as having an infinite fatigue life. Non-ferrous materials

generally do not exhibit an endurance limit.

The Palmgren-Miner hypothesis (26,27) gives one technique for

extending the constant amplitude results to the variable amplitude

case. Each single cycle of stress range Sj is assumed to cause damage

equal to the average damage per cycle in the constant amplitude test,

1/N(Sj). A number of cycles, nj, at amplitude Sj then use a fraction

of the fatigue life or cause the fractional amount of damage, d.:
J

n.

dj = N-@ at stress range Sj (2-28)

The total fraction of damage at time t, D(t) due to all the cycles

in a variable amplitude time history is then found by summing over

all the stress ranges:

10
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n °

D(t) : _.N-_
J

(2-29)

in which D(T) = I at failure, T being the time to failure. Extending

this to the continuous case, the expected damage at the time t is given

by:

E[D(t)] = N*(t) f Ps(U)du
N(u) (2-30)

0

in which N*(t) denotes the expected total number of cycles in time

t in a random fatigue test, and N*(t)Ps(U)du denotes the number of

cycles in the stress range [u,u + du]. Assuming that N(u) = Cu-m from

the constant amplitude S-N curve, equation 2-30 may be written as:

E[D(t)] - N*(t) _
C f umps(u)du (2-31)

0

_ N*(t) E[Sm]
C

in which E[Sm] is the mth moment of the random stress range distribution.

The Rayleigh approximation (25) assumes that a stress range can

be defined as twice a Rayleigh distribution amplitude. This assumption,

which is strictly correct only in the limiting narrowband case, leads

to a closed form solution given by:

E[D(t)] = N*(t) (2_-2 ox)mr (1 + m/2) (2-32)C

= I at failure, t = T

in which ?(x) denotes the Gamma function.

The expected time to failure, E[T], is calculated by defining

a cycle as the time between zero up-crossings of the stress process.

This may be written as:

12



E[T] - N*(T)_ C I (2-33)
÷ ÷

Vo _o (2V_ox)m? (I + m/2)

+

in which _o = expected rate of zero up-crossings.

If an actual time history of the random stress process is available

(as from field data or simulation) various cycle-identification tech-

niques exist from which one can directly estimate the stress range

moment, E[sm]. One of the most widely accepted of these techniques

is the rainflow method proposed by Matsuishi and Endo (24). An illustra-

tion of the technique is shown in Figure 2.2. The time history may

be visualized as a cross-section or profile through a water filled

reservoir. The lowest valley is drained, identifying the 2 largest

half-cycles [7-10,10-13], and leaving two smaller valleys full. The

next lowest valley is drained, identifying two half-cycles [I-4,4-7].

Continuing in this manner, the next lowest valleys are drained, and

full cycles [2-3] and [8-9], [11-12] and [5-6] are identified, followed

by half-cycles [0-I], and [13-14] respectively. It can be shown that

the rainflow technique essentially identifies stress cycles as closed

hysteresis loops for a material satisfying the Masing hypothesis.

Several algorithms are available for performing rainflow analysis

(8,9,24), either on an entire time history in a single pass, or sequen-

tially in "real time" as the time history is generated or observed.

The algorithm used in this study was a real-time scheme developed by

Lutes and first employed by Zimmerman (43).

In the following, E[Rm] denotes the stress range moment determined

by rainflow analysis.
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2.3 Gaussian Process Simulation

A technique for the simulation of a stationary random process,

herein referred to as the Gaussian technique, was first indicated by

S.O. Rice (32). The Gaussian technique is well known in the literature

and has become a standard method of simulating stationary, Gaussian

random processes (2,5,35,36,41). The technique synthesizes a realization

of the random process {X(t)} from the one-sided psd GX(m) according

to the equation:

M

X(t) = _ [2A_Gx(mi)] I/2 sin(mit - ¢i ) (2-34)
i = 1

in which:

Am = frequency interval

GX(m i) = ordinate of one-sided psd at mi

¢i

= midpoint of frequency interval

= independent, identically distributed

phase angles, uniform on [0,27]

(i.i.d.) random

X(t) is approximated as the sum of M sine wave components having random

phase angles ¢i and of amplitude [2A_Gx(_i)]I/2. The normality

of X(t) is ensured for large N by the Central Limit Theorem (1,28,29).

For a constant frequency interval, Am, X(t) will be periodic with period

T = 2_/A_. This periodicity may be avoided by using a randomly varying

Am or by selecting a new set of random phase angles {¢i } at the end

of each period.

The process formed by the extrema of {X(t)}, the envelope process,

is usually of more interest than the process itself for problems in

the analysis of first excursion probability, fatigue, and crack propaga-

15



tion. Simulation of the extrema (peaks and valleys) by the Gaussian

technique can be very laborious because the exact location of the extrema

is not known and an extremely large number of sample points must be

generated to accurately define the peaks and valleys. For fatigue

analysis this technique becomeseven more inefficient because the rain-

flow cycle identification technique discards all sample points but

the peaks and valleys, which are necessary to define the stress ranges.

Yang (42) recognized this inefficiency and proposed a technique

for simulating a randomenvelope process which utilized the Fast Fourier

Transform. Yang's technique, however, is best suited to narrowband

processes which have a well defined period, TO, at which the envelope

process is sampled to generate the extrema. For wideband processes,

the problem is again one of knowing the location of the extrema, or

of knowing at what times to sample the envelope process.

Zimmerman(43) also recognized the inefficiency of the Gaussian

simulation technique for fatigue analysis and studied three alternate

techniques which produced correlated sequences of extrema having either

the Rayleigh or the S.O. Rice distributions. His work avoided the

uncertainty about the time of occurrence of the extrema and when to

sample the process by looking directly at the extrema as a correlated

sequence of random variables. This approach introduced the parameter

Pk' the correlation between extrema k steps apart, and the problem

of determining how the extrema correlations relate to the more commonly

used statistics of a random process. Zimmermanempirically related

PI' the peak-valley correlation, to bandwidth as described by e2 and

with this information was successful in directly simulating correlated

sequences of Rayleigh (Zimmerman's Technique Ill) or S.O. Rice (his

16



Technique IV) distributed extrema. Simulation Technique IV was found

to be three to four times faster than the Gaussian technique and gave

comparable rainflow analysis results. These techniques were applied

by Sarkani (34) to generate random loadings for an experimental study

of fatigue in welded joints.

Zimmerman's techniques are only valid for the special case of

unimodal (or "l-block") psd's which are sufficiently described by the

parameter Pl" Attempts to extend his techniques to bimodal (or

"2-block") psd's were frustrated by the unsolved problem of relating

the behavior of the extrema correlations to any spectral parameters.

For bimodal psd's, Pl is insufficient to describe the relationship

between extrema and Zimmerman'stechniques are not applicable.

2.4 Autoregressive (AR) Processes and Simulation

A very versatile set of models for scalar (univariate and one-dimen-

sional) random processes, knownas Autoregressive Moving Average (ARMA)

models, is described by Box and Jenkins (3) and Jenkins and Watt (19).

These time series models have found wide application outside of struc-

tural engineering, primarily in economic or business forecasting.

ARMAmodels have only recently been applied to structural engineering

problems (33). Gersch (10,11,12,13,14,15,16,17) used ARMAtime series

techniques to synthesize the response of linear structural systems

to stationary randomexcitation. Reed and Scanlan (31) modeled cooling

tower wind loadings, and others have utilized the method to model sea

waves (37,38) and earthquake ground motions (4,18,30).

The general ARMA(p,q) model of a stationary random process is

given by:

17



Zt = ¢iZt_1 + ¢2Zt_2 + ... + ¢pZt_p

• + _ (2-35)+ at + elat. I + 02at_ 2 + • . + Oqat_ q

in which the present value of the random process, Zt, is expressed

as a weighted sum of the past p values of the process,

{Zt_1,Zt_2,...,Zt_p}, a weighted sum of the q + I random variables

{at'at-1'at-2,-.-,at_q}and a constant term _. The sequence {a k} is

generally assumed to be of i.i.d., mean-zero, normal variates. The

ARMA(p,q) model has p + q + 2 parameters (¢i,¢2,.-., ¢p,@i,82,-.-,

Oq,_,o_) which must be estimated from data on the process to be modeled.

Box and Jenkins (3) note that in practice the number of unknown coeffi-

cients usually need not be greater than 2 for either p or q. The random

variables {a k} are sometimes known as the residuals because they repre-

sent the residual, random factor that is not accounted for in the deter-

ministic part of the model (the relationship between the current value,

Zt, and the past values, {Zt_k} ).

A special form of the ARMA(p,q) model is the autoregressive, AR(p),

model (q = 0):

Zt = ¢iZt_l + ¢2Zt_2 + ---+ ¢pZt_ p + at + _ (2-36)

in which the current value of the process is expressed completely by

a weighted sum of past values, {Zt_1,Zt_2,...,Zt_p} , a random variate

at , and a constant _. The AR(p) model has p + 2 unknowns (¢i,¢2.-..,

Cp,_,o_) which must be estimated.

The autocorrelation, Pk' between Zt and the value Zt+ k, separated

by k intervals of time, is defined as:

18



E[(Zt - _)(Zt+k - _)]

Pk : E[(Z t- _)2] (2-37)

The autocorrelation function for an AR(p) process is given by

the difference equation:

Pk = @lPk-1 + ¢2Pk-2 + "'" + ¢pPk-p (2-38)

Note that this equation is analogous to the difference equation satisfied

by the process itself. By successively substituting k = 1,2,...p into

this equation, a set of linear equations is obtained for ¢i,¢2,--.,@p

in terms of Pl' P2""Pp" Replacing the theoretical {pk } by their

estimates obtained from the data, {rk}, gives the Yule-Walker estimates

for the {¢k}:

[¢] : [Ro] "[r D] (2-39)

in which

m
A A

[qb]: _I

'2

[Rp] : F I

rI

rp-1

r1

I

rp-2

r2

r1

rp-3

rp-1

rp-2

19



[rp] : r I

r 2

r
P

Box and Jenkins (3) show that these estimates approximate the fully

efficient maximum likelihood estimates.

For the most common AR(1) and AR(2) processes, the parameter esti-

mates are :

A

AR(1): 01 : rl (2-40)

^ ri(I - r2) (2-41)
AR(2): 01 = 2

I - r I

^ r 2 - r_

02 - 2
I - r I

The variance of an AR(p) process is:

2
2 °a

°Z = I - P101 - P202 ..... PpOp

Substituting {r k} for {pk } and the estimate Co

of the residuals {a k} is estimated by:

^2 : Co( ^ ^ _prp)oa 1 - 01r I - 02r 2 .....

the

(2-42)

variance

(2-43)

For the AR(1) and AR(2) process, this becomes:

AR(1): oa : Co(I - r )

^2=
AR(2): oa Co [1 -

r_(1 - r2)

1 -

r2(r 2 - rl 2)

I -

(2-44)

(2-45)
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One can show that the AR(1) process is a Markov process. Zimmerman's

techniques Ill and IV (43) are of the AR(1) type, although they are

not expressed explicitly in this form. The present work is intended

to extend the concept of modeling the extrema of a random process as

a sequence of correlated random variables, as used by Zimmerman for

l-block psd's, to a more general technique adapted from the ARMA(p,q)

or AR(p) family of stochastic models. Chapters 4 and 5 discuss the

details of parameter estimation and the modifications to the AR(p)

model necessary to synthesize correlated extrema.
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CHAPTER3

GAUSSIANSIMULATIONRESULTS

Chapter 3 presents the results of a study of four psd types for

which time histories were simulated using the Gaussian technique of

Section 2.3. The psd's studied are shownin Figure 3.1.

The psd of Figure 3.1a is a band-limited white noise approximation

to a unimodal psd, herein referred to as a 1-block psd. It is charac-

terized by a constant squared amplitude, G, over the frequency range

_1 to w2. Bimodal psd cases were formed by the superposition of two

l-block psd's, as in Figure 3.1b. These cases, referred to as 2-block

psd's, are characterized by the squared amplitude levels G

and the frequency ranges _I to m2 and m3 to m4" These

are related through the frequency ratio:

1 and G2,

parameters

r = _3/_i = m4/_2

and the area ratio:

(3-I)

b = A2/A 1 (3-2)

in which AI = area of block 1

A2 = area of block 2

A more realistic unimodal psd shape was investigated using a form

previously studied by Wirsching and Light (41), shown in Figure 3.2c.

This psd has a form given by:

GX(m ) = K exp (-B/m 3) (3-3)
w
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in which K = 3B for E[X 2] = i. This form presents some analytical

difficulties because its fourth moment, _4' is not finite, so the irre-

gularity factor for this psd is zero (_ = 0). In addition, this psd

does not have a known Fourier transform, so an analytical expression

for the autocorrelation function, RXX(T), is not known. Because of

these difficulties, the unimodal psd of Figure 3.1d was also studied.

It has a convenient form given by:

i exp[-(_-u)2/2c 2] (3-4)
GX(_) - c_

in which: u = center frequency

c = a shape factor

This form is analogous to a Gaussian or normal probability density

function (pdf), for which _4 is finite and for which the Fourier trans-

form is well known.

Parameter values for the specific psd cases studied are tabulated

in Appendix A.

The simulation results of interest in these studies were the

expected damage per unit time and the extrema correlations. For bimodal

psd's, the relative contributions by the modes to the damage rate are

discussed in Section 3.1. In Section 3.2, results are presented for

unimodal psd's on the effect of high frequency psd truncation on the

damage rate. Finally, the characteristics of the extrema correlations

are presented in Section 3.3, providing a basis for the autoregressive

models described in Chapters 4 and 5.
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3.1PSD Component Contributions to Damage

The effect of truncating high and low frequency psd components

was studied for the 2-block type bimodal psd's. The goal of this study

was to determine empirical limits beyond which a sufficiently accurate

rainflow damage prediction may be obtained by considering the psd to

be unimodal.

The expected damage rate is defined as:

d/t = npE[Rm](1 + b)m/2 (3-5)

For this study, the additional factor (i + b)m/2 has been added

to normalize the results such that the psd's all have a low frequency

component of unit area.

The normalized damage rate, d/d ° , is defined as:

d _ d/t (3-6)

do do/t

in which: do/t is the d/t for b = 0 (l-block psd).

A normalized area ratio, br2/m, is also defined in which:

b = A2/A I

r = _3/_1 = _4/_2

m = material constant from Equation (2-27)

The normalized damage rate, d/d o, is shown as a function of br 2/m

for m = 3 in Figure 3.2. Corresponding plots for m = 5 and m = 7 are

given by Figures 3.3 and 3.4, respectively.

The two asymptotic limits shown in these figures are evaluated

as follows.
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For b = O, the bimodal psd reduces to a unimodal psd corresponding

to the low frequency block of the bimodal psd. For the particular

psd's studied, using Equation 2-13 to evaluate n gives:
P

_ 1 3.06006 1/2
np 2_ ( 3.01 ) (3-7)

The value of the range moment, E[Rm], was determined from unimodal

simulations as:

29.79

E[R m] = 593.9

16,550

form : 3

for m = 5

for m = 7

(3-8)

The low frequency asymptotic limit (b = O) for the damage rate is then:

f

do _ 14.781 for m = 3

t _ 95.30 for m = 52,656 for m = 7

(3-9)

Evaluating n for the general bimodal psd case gives:
P

= i [3.06006 (I+br4)]I/2

np 2-_ 3.01 (I + br2)
(3-1o)

and Equation 3-5 gives the damage rate as:

t 2_ .
(I +br4)]1/2 (I

(i + br2)

+ b)m/2 (3-11)

Recognizing that for a l-block psd (b = 0):

do _ E[Rm] (3.06006)I/2
t 2_ 3.01 (3-12)

Equation 3-11 may be rewritten as:

d _ (1+br4)] )m/2
do (I+b (3-13)
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Now as b tends to infinity, the bimodal psd reduces to its high fre-

quency, unimodal component. Thus, for large b:

[(l+br4)]I/2 __ (br4)I/2 : r (3-14)
(1 + br 2) br 2

and (1 + b) m/2 -_ bm/2 (3-15)

The high frequency (large b) asymptotic limit is thus:

d _ rbm/2 (3-16)

do

Errors in the rainflow damage estimate as large as 20% are

often acceptable in practical fatigue analysis. Using this accuracy

level, the limiting area ratio below which the high frequency component

mode may be neglected was estimated to be in the range of b = 0.1 to

b = 0.01 for r = 1.5 to 15, respectively. Similarly, the limiting

area ratio above which the low frequency component mode may be neglected

was estimated to be from about b = 10 to b = 2 for r = 1.5 to 15, respec-

tively. The region for which bimodal effects may not be neglected

is also illustrated in Figure 3.5. This figure gives Vanmarcke's band-

width parameter, q, as a function of b and r for 2-block psd's. The

central region bounded by the dashed lines for m = 3,5,7 denotes the

combinations of b and r for which the bimodal effect is significant.

Overall limits for the region for which bimodal effects are important,

bounding the effects due to m and r, are from b = 0.01 to b = 10.

Psd's with area ratios outside this range can be considered to be uni-

modal for practical purposes.
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3.2 High Frequency Truncation Effect

The effect of high frequency psd truncation on the rainflow damage

rate was also studied for the two unimodal psd types of Figure 3.1c

and d. A rainflow analysis was performed using various high frequency

cut-off levels. Average results for m = 3,5,7 are plotted in Figure

3.6 as normalized damage per unit time, d/d° , versus a normalized cut-off

frequency parameter, u. The expected damage per unit time is defined

as:

d/t : npE[R m] (3-17)

in which: n : expected rate of peak occurrences
P

E[Rm] = the mth moment of the rainflow ranges

The normalized damage per unit time is defined as:

d/t (3-18)
d/d ° -do/t

in which: do/t = d/t for Umax.

The normalized cut-off frequency is defined as:

mc - 11
u = (3-19)

(I 2 - 112)1/2

in which: mc = cut-off frequency

11 = Ist moment of psd about m = 0

12 = 2nd moment of psd about m = O.

Note that u is analogous to the standardized variate for a normal

distribution, U = (X - _)/o.
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Assuming again that as much as a 20% error is acceptable in

the rainflow damage estimate, a high frequency cut-off of about u =

2.0 can be used with the psd defined by Equation 3-3. For the "normal"

form psd (Equation 3-4), which decays much faster (as e-m2), a cut-off

of u = 1.0 is sufficient for a rainflow damage estimate accurate to

5%.

It was found that these results could be presented in a more uniform

manner, such that the data for both psd types defined approximately

a single curve, by using a frequency cut-off parameter q/qo' in

which q is Vanmarcke's bandwidth parameter (Equation 2-18) for the

psd with high frequency cut-off mc' and qo is the theoretical q for

the psd with mc = _" For the psd defined by Equation 3-3, qo = 0.5613,

while qo = 0.1961 for the psd given by Equation 3-4. The average (for

m = 3,5,7) normalized damage rate, d/d o , as a function of q/qo'

is shown in Figure 3.7. These results indicate that truncation of

a unimodal psd at a ratio of q/qo = 0.6 or greater should result

in less than a 20% error in the rainflow damage estimate.

3.3 Extrema Correlations

Modeling the extrema (peaks and valleys) of a random stress time

history as an autoregressive (AR) process requires knowledge of the

pdf of extrema and the extrema correlations. The pdf for the extrema

is given by the result due to S.O. Rice, equation 2-20. At this time,

however, no analytical result exists which describes the extrema correla-

tions.

Empirical estimates of the extrema correlations were computed

as part of the simulation studies previously described. For modeling
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the extrema as an AR process, the correlation of prime importance is

the peak-to-valley or l-step correlation, PI" But in many cases

the greatest peak-to-valley (P-V) correlation does not occur at one

time step apart, or lag one, but occurs several time steps or lags

later. This most significant P-V correlation will be denoted as PPV"

Figure 3.8 presents Pl plotted versus Vanmarcke's bandwidth para-

meter, q, for bimodal psd's. Several trends are evident. First, Pl

tends to -I as q tends to zero, as expected for the limiting narrowband

case. The apparent scatter in the data is the result of two effects.

If data points of constant frequency ratio, r, are connected, a shift

downward (decreasing pl ) can be identified with increasing r, as shown

in Figure 3.9. A second trend becomes evident if for a constant r

the data points are connected in order of decreasing area ratio, b,

as shown in Figure 3.10. Starting in the lower left (with the limiting

narrowband case), Pl increases nearly linearly with q as b decreases,

until some limiting value is reached beyond which further reductions

in b reduce both q and PI" This latter portion of the curve, however,

does not return back along the initial path, but loops back at a higher

for a given q.Pl

These trends indicate that q is not the ideal spectral parameter

to use to describe the variation of correlation with bandwidth. Ideally,

one would use a parameter which was insensitive to changes in r and

for which Pl was uniquely determined. What this ideal parameter may

be is unknown at this time.
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The relation between Pl and q can be used, however, if the

relatively weak dependence on r is neglected and if only practical

ranges of b are considered. The return portion of the correlation

curve is essentially eliminated if the only values considered are those

corresponding to area ratios (b) for which bimodal effects may not

be neglected, as determined in the Section 3.1. (See Figure 3.5) The

resulting relationship between Pl and q is shown in Figure 3.11 and

is given by the following equation:

Pl = 2.45q - 1.14, 0.057 < q < 0.873 (3-20)

which is a linear regression of Pl on q. Although the fit is imperfect,

it is good for practical purposes, especially for unimodal psd's.

The extrema correlations for random processes having unimodal

psd's are well behaved, as shown in Figure 3.12. In this figure and

those which follow, the expected time of occurence for the kth extremum

is k/2np. The most significant peak-to-valley correlation (ppv) occurs

at lag one (k=1), and the other correlations decay rapidly in an alter-

nating manner. This makes it possible to model the extrema with an

AR process based only on the lag one correlation, PI" This will

be discussed in more detail in Chapter 4.

The extrema correlations for bimodal psd processes are not as

well behaved. For exa_le, Figures 3.13 through 3.15 illustrate how

the first 10 extrema correlations change as a function of b for a 2-block

psd having r = 7. Note that in many cases Pl is not the most significant

peak-to-valley correlation (ppv) and may even be positive. Which

P-V correlation is most significant appears to be a function of both

b and r. As b is increased from zero, the lag at which PPV occurs
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changes from k = I to k = 3, to k = 5,..-until a limiting value of

k = r is reached at about b = I. As b is increased further the lag

at which PPV occurs decreases, finally coming back to k = 1 at large

b values.

This behavior seems reasonable if the random process is visualized

as the superposition of two narrowband processes. For very small values

of b, the low frequency component is dominant, with only a low level

of the high frequency component superimposed as a "noise" in the signal.

The significant extrema will be the peaks and valleys of the low fre-

quency component, and Pl will be the dominant correlation. (See Figure

3.16.) At higher b values, the high frequency component becomes

increasingly significant, so that the most significant valley following

a large peak (and thereby giving a large rainflow range) no longer

occurs immediately after that peak, but comes some n lags later. (See

Figure 3.17.) At still higher b values, the high frequency component

dominates and the low frequency component only appears as a slow wander

about the mean. The most significant extrema correlation (and rainflow

range) again occurs between adjacent peaks and valleys. (See Figure

3.18.)

This phenomenon is difficult to observe directly from a psd, but

is easily seen in the autocorrelation function. As an example, Figures

3.19 through 3.24 show the RXX(T) corresponding to the extrema correla-

tion cases presented in Figures 3.13 through 3.15. Note that in Figures

3.19 through 3.24 the upper figures are all to the same time scale

to indicate how the change in area ratio, b, effects RXX(T) and the

frequency content of {X(t)}. The time scale in the lower figures has

been adjusted so that about the first 10 extrema of RXX(T ) appear,
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for purposes of comparison with Figures 3.13 through 3.15. The qualita-

tive correspondence between the extrema of RXX(T ) and the extrema cor-

relations of {X(t)} is very good in some cases, and the most significant

extrema of RXX(T ) can be an indicator of which P-V correlation will

be most significant. Because of this qualitative correspondence between

the extrema of RXX(T) and the extrema correlations of {X(t)}, it may

be possible to develop an analytical method for obtaining the extrema

correlations directly from RXX(T), but at this time the problem remains

unsolved.

Appendix E presents the results of some efforts in this direction

which, although they were not completely successful, have contributed

to an improved understanding of the effects of random occurrence times

and phase.

The complex behavior of the extrema correlations of processes

having bimodal type psd's complicates the task of modeling the extrema

as an AR process. Information is needed about both Pl and PPV as

functions of bandwidth (or b and r). This introduces the difficulty

of first predicting the lag at which PPV will occur, and then

of estimating its value. A technique for dealing with this problem

is presented in Chapter 5 on the AR modeling of the extrema for bimodal

psd's.
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Chapter 4

AUTOREGRESSIVE SIMULATION: UNIMODAL PSD'S

This chapter describes the AR simulation technique as applied

to random processes having a l-block or unimodal type psd. Section

4.1 briefly reviews the characteristics of the AR(1) process previously

presented in Section 2.4. Section 4.2 describes the specific application

of AR(1) models to the simulation of extrema processes. The results

of AR simulations are compared to those from Gaussian simulations in

Section 4.3. Specifically, the rainflow range moments, E[Rm], are

compared as a measure of the accuracy of the simulation, and the relative

computation times are compared as a measure of computational efficiency.

4.1AR(1) Processes

The AR(1) process is a particular case of the general ARMA(p,q)

family (see Section 2.4) and is determined by the equation:

Zt = ¢iZt_1 + at +
(4-1)

in which: Zt = current value of process

Zt_ 1 = previous value of process

¢i

at

= autoregressive weighting parameter

= current value of random variate

: constant

Recall that the parameter ¢1 is estimated by the autocorrelation observed

at lag one:

##1 = rl
(2-40)
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and that the random variates {ak} are usually i.i.d., mean-zero, normal

variates, with variance estimated by:

^ 2 r12 )oa = Co(I - (2-44)

in which Co is the estimate for OZ2.

for an AR(1) process is given by:

The autocorrelation function

Pk = ¢IPk-i k = 1,2,3,... (4-2)

given that ¢1 = PI" Equation (4-2) implies that the correlations

for an AR(1) process satisfy the relationship:

Pn : [DI ]n n : 2,3,4,... (4-3)

4.2 AR(1) Application to Extrema Processes

Modeling the extrema of a random process by an AR(1) model required

several innovations. First, because AR models define the present value,

Zt, as a sum of past values, the Central Limit Theorem may be invoked

to conclude that the pdf of Zt must approach a normal distribution.

But the peaks (or valleys) of a Gaussian random process are known to

have the S.O. Rice distribution, not a normal distribution. This diffi-

culty was solved by mapping the extrema from the normal distribution,

after the AR simulation, to the S.O. Rice distribution. The mapping

of the extrema from the standard normal, N(0,1), distribution to an

S.O. Rice distribution was performed using a two-stage table look-up

procedure based on the inverse transform technique (1,28). Two tables

or arrays were evaluated at the beginning of the simulation, the first

giving the standard normal cdf from -2.75 to 2.75 at 512 points, the
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other giving the S.O. Rice cdf from -I.5o X to 5.5oX at 512 points.

For the mapping, a table look-up or search was first performed on the

normal cdf array, mapping each point Zt to a point Yt on the range

[0,1]. A second table look-up on the S.O. Rice cdf array then mapped

each point Yt to a point Xt. This procedure is illustrated in Figure

4.1. The result at this point in the simulation was a sequence of

S.O. Rice distributed, correlated peaks. The sequence of peaks and

valleys required to perform a rainflow range identification was generated

by simply changing the sign on alternating peak values. The simulation

process is illustrated in Figure 4.2, showing the forms of the distribu-

tions at the various stages in the procedure. An outline of the simula-

tion algorithm is given in Figure 4.3.

Two parameters are required for the simulation procedure: the

AR(1) parameter, @i' and the irregularity factor, e. The parameter

@I determines the correlation between adjacent simulation values and

may be estimated as the negative of the peak-to-valley correlation,

PI' given in Figure 3.11, or by Equation 3-20. The irregularity factor,

e, which is needed to determine the S.O. Rice distribution used in

the mapping is determined from the psd using Equation 2-17. Thus,

the two spectral parameters q and e are the essential inputs required

for the AR(1) simulation technique. The specific parameter values

used for the AR(1) simulations are tabulated in Appendix C.

The mapping from the normal distribution to the S.O. Rice distribu-

tion is nonlinear. Because of this nonlinearity the correlations between

simulated points would be expected to be changed by the mapping. This

potential effect was studied during the Gaussian simulations described
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AR(1) Model
Zt = _IZt_l + at

Simulation

Sequence of
Correlated

F!ormal Random

Variables

Sequence of
Correlated

S. O. Rice

Distributed

Random Variables

Mapping

I/
A!ternate

ns

Sequence of Correlated Extrema

Figure 4.2 Autoregressive Simulation Technique
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Figure 4.3

AR(1) SIMULATION ALGORITHM

I) Input Data: e, ¢i

2) Generate Arrays:

FP - S.O. Rice CDF, Determined By

BG - Standard Normal CDF, N(0,1)

3) Compute Standard Deviation Of AR(1) Process:

(1 - _12) -I/2SD

4) AR Simulation:

a) Generate N(0,1) Random Variate, U

b) Wn = qbl,Wn_I + U

c) Zn = Wn/SD

d) Return To a) Until Required Number Of Points Simulated

5) Map From N(0,1) To S.O. Rice (e):

a) Look-up Yn

b) Look-up X
n

Corresponding To Zn From Array BG

Corresponding to Yn From Array FP

6) Generate Peak-Valley Sequence

Xn = -Xn For n Odd

7) Perform Statistical And Rainflow Analysis On Xn Sequence As Required
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in Chapter 3. By mapping the Gaussian simulation extrema from the

S.O. Rice distribution to the normal distribution, and recomputing

the extrema correlations, the actual change in the correlation due

to the mapping was found. Note that this mapping procedure is simply

the inverse of the mapping process used in the AR(1) simulation algorithm

to go from the normal distribution to the S.O. Rice distribution.

The effect of this mapping on the lag one correlation, Pl' is summarized

in Table 4.1 for several unimodal and bimodal psd cases. It was found

that if the mapping changed the correlation, it was always to make

Pl more positive. However, the magnitude of this change was very small

and was no more than the change in Pl observed between separate Gaussian

simulation realizations for a particular psd. Therefore, the effect

of the nonlinear mapping on the extrema correlations was neglected

in the ARmodel.

4.3 Simulation Results

The results of the AR(1) simulations and rainflow range identifica-

tion are compared to the results obtained using the Gaussian simulation

procedure in Figures 4.4 through 4.6. The results are plotted in terms

of the expected range moment, E[Rm], as a function of Vanmarcke°s band-

width parameter, q, for m = 3,5,7, respectively. As shown, the AR(1)

simulation technique closely reproduces the range moments obtained

with the Gaussian method. Note that the value of E[Rm] approaches

the theoretical value of E[Sm] for the limiting narrowband case, as

given by Equation 2-32.

A comparison of the required computation time for the two methods

showed that the AR(1) technique averaged 11.7 times faster than the
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Gaussian technique. This comparison was made to Gaussian simulations

which synthesized X(t) as a sum of 20 harmonics or psd components,

(N = 20 in Equation 2-34) and which used relatively large time steps,

such that approximately every fourth point in the time series is an

extremum. These two conditions represent approximate limits on the

efficiency of the Gaussian technique in that the use of fewer than

20 harmonics may bring into question the normality of the signal, while

the use of larger time steps will decrease the accuracy of the extrema

determination. Actual simulation time on an IBM AT Personal Computer

(with a math coprocessor) for a sequence of 4,000 extrema averaged

7 minutes 24 seconds using the Gaussian technique. The AR(1) method

required only 38 seconds for the simulation of 4,000 extrema.
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Table 4-1 65

PSD Type

Unimodal

Bimodal
r=2.0

r=3.0

r = 4.0

r = 5.0

r=6.0

r = 7.0

EFFECT OF MAPPING PROCEDURE ON CORRELATION Pl

Pl

q S.O. Rice Normal

.058 -.95 -.94

.115 -.84 -.82

.160 -.73 -.71

.225 -.57 -.55

.297 -.34 -.32

.097 -.90 -.88

.247 -.52 -.49

.321 -.30 -.29

.336 -.32 -.30

.098 -.90 -.89

.332 -.27 -.26

.4_v .08 .09

.503 .19 .20

.098 -.91 -.89

.384 -.17 -.16

.517 .24 .24

.600 .43 .43

.098 -.91 -.90

.427 -.05 -.04

.557 .33 .33

.668 .58 .58

.098 -.91 -.90

.429 -.09 -.08

.583 .36 .36

.713 .68 .68

.098 -.92 -.90

.441 -.09 -.07

.602 .37 .38

.745 .74 .74
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Chapter 5

AUTOREGRESSIVE SIMULATION FOR BIMODAL PSD'S

This chapter discusses the adaptation of the AR(1) simulation

technique for unimodal psd's to certain special cases of bimodal psd's.

These special cases are the 2-block psd's described in Chapter 3.

Section 5.1 briefly discusses the difficulties encountered in

modeling a bimodal psd extrema process with an AR(p) or ARMA(p,q) model.

In Section 5.2 the details of the modifications to the AR(1) model

are presented. Section 5.3 is a comparison of the results of the pro-

posed technique to the Gaussian simulation method, in terms of predicted

range moments and required computation time.

5.1Bimodal PSD Process Modelin 9 Difficulties

As discussed in Section 3.3, the extrema correlations for bimodal

psd processes exhibit a complicated behavior which is a function of

both b and r. (See Figures 3.13 through 3.15). Information about

pl,P2,..-ppv as functions of bandwidth would be required for applying

either an AR(p) or ARMA(p,q) type model. However, the usefulness of

such a model is limited by the number of parameters required to define

it.

An AR(p) or ARMA(p,q) model is determined by the ARMA parameters

@1,@2,..-¢p, and ei,02,-..0 q, which may be estimated as functions of

the extrema correlations, which in turn must be described in some form

as functions of bandwidth (or b and r). A high order ARMA(p,q) model

would be needed to reproduce the complex behavior of the extrema correla-

tions pl,P2,-.-ppv. Thus, using an AR(p) or ARMA(p,q) model to directly

simulate the extrema of a bimodal psd random process would require
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considerable effort in estimating a large numberof parameters. However,

a much simpler adaptation of the AR(1) model which seems promising

is discussed below.

5.2 Adaptation of the AR(1) Model

Rather than modeling the extrema of a bimodal psd process as an

ARMA(p,q) process with many parameters, the technique proposed herein

is to model the extrema process as the superposition of two AR(1) models.

The 2-block psd's described in Chapter 3 were all composed of two narrow-

band single blocks, and for such a single block psd the AR(1) model

has been shown to produce damage predictions comparable to those obtained

using the Gaussian technique. The following development attempts to

simulate the extrema for a 2-block psd by superposition of two AR(1)

models (one for each block), with the superposition depending directly

on the frequency ratio, r, and the area ratio, b.

The superposition technique is most easily implemented for psd's

which have odd integer values of r, so that every rth extrema of the

high-frequency AR(1) component matches an extremum in the low-frequency

AR(1) component. An interpolation of the low-frequency component at

r-1 points between its extrema is also necessary in order to augment

this component with intermediate points corresponding to the "unmatched"

extrema in the high frequency component. The superposition of the

two components can then be performed. The relative contribution of

the two components to the variance of the random process {X(t)} is

determined by the psd area ratio, b, and is provided for by scaling

each component prior to the superposition.
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The superposition introduces an approximation by assuming that

the two components have extrema which exactly coincide in time, whereas

this is not true for the actual random process. The effect of this

approximation should be to overestimate the stress ranges when r is

an odd integer, because each peak in the low frequency componentmatches

a peak in the high frequency componentand each valley matches a valley.

See Figure 5.1a.

Whenr is an even integer, however, the effect of the superposition

is to underestimate the stress ranges, because now a peak in one of

the componentsmay match with a valley in the other. See Figure 5.1b.

This effect can be expected to grossly distort the simulated time history

and stress ranges. As r becomeslarge, though, this error is reduced

because for each peak (or valley) in the low-frequency component there

is a peak (or valley) very close to it in the high-frequency component.

See Figure 5.1c. An approximate value for r beyond which this effect

may be neglected without significant loss of accuracy is discussed

in Section 5.3.

The extension of the superposition to the general case of non-

integer values of r requires interpolation of both the high and low

frequency components because in general the extrema in the components

no longer correspond in time. Thus each component must be augmented

by intermediate points which correspond in time to the extrema in the

other component.

The key to performing the required interpolation is to note that

the psd frequency ratio r gives the number of high frequency component

extrema which occur for each low frequency component extremum. For
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example, a value of r : 3.5 means that "3 and I/2" extrema occur

in the high frequency component for each low frequency extremum. Of

course, the extrema are actually integer numbered. Thus, to superimpose

the two components the high frequency component must be interpolated

after every 3rd extremum to find a value to match with a low frequency

extremum.

In general, the largest integer less than r, INT(r), gives the

extremum multiple after which an interpolation must be made, and the

fractional (or non-integer) part of r, r-INT(r), gives the "time" after

this extrema at which the high frequency component must be interpolated.

Similarly, the inverse of the psd frequency ratio, i/r, determines

the points at which the low frequency component must be interpolated

to provide values matching the high frequency component extrema. See

Figure 5.2.

The general interpolation equation used in the simulation algorithm

is:

y= X(i) -2X(i+1) cos(E_)+ X(i)+X(i+1)2 (5-1)

in which:

Y = interpolated value

X = extrema sequence being interpolated

X(i) = X(mn), m = 1,2,3,...

n = INT(r)

X(i + I) = X(mn+l)

E = r - INT(r)
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The outline of the algorithm to perform the general AR(1) superposition

technique, for any r > I, is given in Figure 5.3.

5.3 Simulation Results

The expected rainflow range moments computed using the proposed

AR(1)-superposition technique are compared to the results obtained

by the Gaussian simulation procedure in Figures 5.4 through 5.6. The

expected range moment, E[Rm], (m = 3,5,7) is plotted as a function

of Vanmarcke's bandwidth parameter, q, for several values of the 2-block

psd frequency ratio, r, from r = 1.5 to r = 10.0. (See Appendix E

for parameters of the cases simulated.)

Note that for values of r = 2.5 and higher the proposed technique

closely reproduces the range moments obtained by the Gaussian simulation

method. For values of r = 1.5 and r = 2.0, the proposed technique

underestimates the stress ranges, as expected for small values of r.

Thus, the proposed technique should be an accurate alternative to the

Gaussian simulation method for 2-block psd's with r = 2.5 or greater.

It was found by comparison of the computation times required by

the two techniques that the AR(1) superposition method was 9 to 13

times faster than the Gaussian technique. The Gaussian simulations

used 40 harmonic components (N=40) and required approximately 15 minutes

and 20 seconds (on an IBM PC AT) to synthesize 4000 extrema. The AR(1)

superposition technique required only 70 to 100 seconds, to simulate

the same number of extrema.
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FIGURE5.3

AR(1) SUPERPOSITIONALGORITHM

1) Use AR(1) unimodal technique to generate an extrema sequence from
the l-block psd component (see Figure 4.3)

2) Divide this sequence into two arrays of component sequences, each
scaled by that component's relative contribution to the process variance:
XL(NI), XH(N2)

3) Check that XL(1) and XH(1) are of same sign.
point of XHarray.

If not, drop first

4) Using the following, step through the high frequency componentarray,
doing interpolation and superposition to form the peak/valley sequence
for the 2-block psd:

k = low frequency componentinterpolation counter
n = high frequency component interpolation counter

i = index for high frequency array, XH(N2)

l = index for low frequency array, XL(NI)

m = index for resultant time history array, Z

s = flag for low frequency interpolation

q = flag for high frequency interpolation

a) Initialize: k=1, I=1, m=1, n=1, q=r, s=l/r

b) Do direct superposition if i = q

I. increment low frequency index:

l=l+1

2. do superposition:

Z(m)=xh(i)+xl(1)

3. increment Z array index and flags q and s:

m=m+1

n=n+1

q=n*r
k=k+1

s=k/r

4. return to b)

c) Do low frequency interpolation

1. compute fraction

E=s-INT(s)

2. do interpolation using equation 5-I
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3. do superposition

Z(m)=xh(i)+y

4. increment Z array index and flag s
m:m+1
k=k+1
x=k/r

d) Do high frequency interpolation if (i+1) is greater than q

I. increment low frequency index:
l=l+1

2. compute fraction

E=q-INT(q)

3. do interpolation using equation 5-I

4. do superposition Z(m)=xl(1)+y

5. increment Z array index and flag q
m=m+l
n=n+l
q:n*r

e) Repeat until out of data

5) Sort the resulting array Z(m) to remove any intermediate
which are not peaks or valleys

6) Perform rainflow or statistical analysis on Z(m) as required

points
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CHAPTER 6

CONCLUSION

The objective of this investigation was to develop a simulation

technique which synthesized the extrema of a random process more effi-

ciently than the Gaussian simulation technique. The incentive for

such a technique exists because the statistic required from a stress

time history for stochastic fatigue analysis is a statistic of the

extrema - the expected range moment, E[Rm]. Considerable computational

effort is wasted in the Gaussian technique because the entire time

history is simulated, while only the resulting extrema are necessary

for estimating E[Rm]. An extrema-synthesizing technique should be

expected to greatly reduce the required computation time because nearly

all of the values generated are extrema.

A general description of ARMA(p,q) stochastic models was presented

and an AR(1) model was proposed for simulating the extrema of processes

having unimodal psd's. The proposed AR(1) technique was found to produce

expected rainflow stress range moments, E[Rm], which compared very

well with those computed using the Gaussian technique. A considerable

savings in computation time was realized, with the AR(1) technique

averaging 11.7 times faster than the Gaussian technique.

An adaptation of the AR(1) technique was proposed for processes

having bimodal psd's. The adaptation involves using two AR(1) processes

in order to simulate the extrema due to each mode, and then superimposing

the two sequences of extrema, taking into account the frequency separa-

tion between the modes of the psd. An intermediate step necessary

prior to the superposition is an interpolation between the extrema
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of one componentto provide points in that component time series corre-

sponding to those in the other component.

The generation of these intermediate values was not found to be

detrimental to the overall efficiency of the technique as it was found

to be 9 to 13 times faster than the Gaussian technique. A comparison

of the results for E[Rm] from the two techniques showed that the AR(1)

superposition technique produced comparable values for frequency ratios

of r = 2.5 and greater. As expected for small values of r, the proposed

technique was found to underestimate E[R m] for r = 1.5 and r = 2.0.

The effects of a random stress process's psd shape characteristics

were also studied as a part of this investigation. For bimodal psd's,

the contribution of the two components to the expected fatigue damage

rate was determined. The range of area ratios for which both components

must be considered was determined to be from b = 0.01 to b = 10 for

frequency ratios from r = 1.5 to r = 15 (and material S-N curves with

m = 3,5, or 7). For bimodal psd's outside this range, the expected

damage rate may be determined with sufficient accuracy for practical

fatigue analysis by considering the psd to be unimodal.

The effect of high frequency truncation on the expected damage

rate was also studied for two unimodal psd's. A shape or truncation

parameter defined as the ratio of the Vanmarcke bandwidth parameter

for the truncated psd to that for the "infinite-tail" psd, denoted

q/qo' was found useful to describe the truncation frequency required

for a desired analysis accuracy. This parameter appeared to account

for the different decay rates of the tails of the two psd's studied,

such that the expected damage rate vs. q/qo could be described as

94



a unique curve. From this data, a value of q/qo : 0.6 was proposed

as a truncation point for unimodal psd's for use in practical fatigue

analysis.

The effect of psd bandwidth and shape on the correlation of the

extrema of the process was also studied. A linear regression of Pl'

the correlation between adjacent extrema or lag one correlation, on

Vanmarcke's bandwidth parameter, q, was proposed as a practical descrip-

tion of the change in Pl with psd bandwidth for unimodal psd's and

bimodal psd's within the region of significance (b = 0.01 to b = 10).

The behavior of higher lag extrema correlations and a possible

relationship to the autocorrelation function of the random process

were also discussed. No analytical relationship is known at this time,

however. This is an area requiring further research if a direct

ARMA(p,q) model of the extrema of bimodal psd processes is desired

as an alternative to the AR(1) superposition technique presented herein.
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APPENDIX B

A NOTE ON THE CORRECTION OF RANGE MOMENTS FROM SIMULATED

STRESS TIME HISTORIES

The range moments computed from a simulated time history may exhibit

a considerable amount of scatter or statistical inaccuracy for a number

of reasons. First, the random number generation algorithm used in

the simulation will produce pseudo-random numbers which do not exactly

fit the desired theoretical distribution. Second, any time history

must also be of finite length, and is not the desired infinite sample

of an ergodic process. Third, in the Gaussian simulation technique,

the number of terms in the summation must be very large for the Central

Limit Theorem to hold and an "exact" simulation result. In practice

only 20 to 40 terms are used. Finally, the simulated time history

is often sampled at a relatively small number of discrete time-points

per cycle which may not exactly correspond to the times of occurrence

of the extrema.

Lutes and Zimmerman (21,42) used an approximate procedure, which

has also been applied to the results of this study, to correct for

the "imperfections" in the simulated sequence of peaks and valleys.

For example, before applying the correction Zimmerman found that the

range moment (for m = 7) from 10 different simulations of the same

process could vary as much as +14% from the mean value. The

corresponding corrected moments varied only +1% from the mean.

The correction is based on the fact that the theoretical distri-

bution of the peaks and valleys is known, Equation 2-20, and it corrects
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for deviations of the simulated sequence from that distribution.

corrected range momentis defined by:

E[Rm]C - E[Zm]T
E[Zm]E E[Rm]E

in which:

The

(B-l)

E[Rm] c = corrected range moment

E[Rm] E = empirical range moment (from simulation)

E[Zm]T = theoretical moment related to peak distribution

E[Zm]E = empirical moment related to peak distribution (from simula-

tion)

The justification for this correction is that the stress ranges

are computed from the peak values, so that errors in the peak distri-

bution moments should introduce comparable errors in the stress range

moments. Two slightly different definitions of Z have been used to

apply the correction. In the first definition Z was the absolute value

of any peak or valley, so it is distributed as the absolute value of

a peak. The alternative definition was to take Z as a peak value or

the negative of a valley value, so it has simply the peak distribution.

The two definitions give essentially the same correction, so that

the choice between them is a matter of convenience. For example, if

m is an odd integer and {X(t)} is normal, defining Z as a peak value

or negative of a valley value allows one to analytically evaluate the

term E[Zm]T in Equation B-1 (see Reference 21, Appendix II). For other

cases this term must be evaluated numerically.
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q

•058

•115

.125

160
189

225

254

297

327

APPENDIX C

AR(1) Technique Simulation Cases

_--2

.993

.975

.971

.954

.937

.915

.896
•868

•848

A

_1_-1

.95

.83

.82
•73
.65
• 56
• 48
• 36
• 29
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r=I.5

r=2.0

r=2.5

r = 3.0

r=3.5

r=4.0

r=4.5

APPENDIX D

AR(1) Superposition Technique Simulation Cases

_b -q -_2

21. .091 .987
2.0 .183 .946
I. 0 .204 .927

.44 •204 .917
• 15 .166 .934

41. .097 .987

3.0 .247 .923

1.0 .321 .852

.39 .336 .802

.21 .312 .796

20. .142 .977

2.0 .338 .871

1.0 .398 .805

.5 .430 .738

.I .359 .695

70. .098 .988

3.0 .332 .890

1.0 .450 .776

.47 .497 .686

.11 .450 .596

20. .166 .973

2.0 .408 .843

1.0 .488 .757

.5 .543 .663

.i .508 .527

88. .098 .989

2.8 .384 .871

1.0 .517 .745

.575 .570 .663

.21 .600 .532

20. .179 .972

2.0 .447 .831

1.0 .539 .736

.5 .608 .629

.I .690 .442
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r=5.0

r=7.5

r = 10.0

b

101•

2•5

1.0

•39

•04

116•
3.0
I•0

•32
•133

125•
3.0
1.0

•10
.01

q

•098

•427

.557

•648

•557

.099

•435

•609

•735

.766

•099

.452

•635

.819

.635

--_2

•989

.853

.730

.579
•382

•989

•865

•715

•516

•386

.990

.863

.710

•329

•197
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APPENDIX E

Relating Extrema Correlations to the

Autocorrelation Function

The simulation of the extrema of a random process by means of

an ARMA(p,q) model requires knowledge of the correlation of the extrema

to estimate the parameters in the model. This appendix describes an

effort that was made to formulate an analytical relationship between

the correlation of extrema of a random process and its autocorrelation

function. Although the problem remains unsolved, it is hoped that

the work described herein may provide an indication of the direction

future efforts should take. In approaching this problem it seemed

more promising to attempt first to approximate the autocorrelation

function, Rxx(T), given that the extrema correlations were known.

This information was then to be applied to the inverse problem of com-

puting the extrema correlations from a known autocorrelation function.

E.1 The Step-T_pe Model

This section focuses on the way in which Rxx(t) will be affected

by the randomness of the occurrence time of the extrema of X(t) when

the correlation values for the magnitudes of the extrema are presumed

to be known. Much of the effort is devoted to an attempt to find a

reasonable model for a set of occurrence times (tl,t2,t3,...). Let:

P.

X(t) = J 2! for T_ _ t _ T_+ I

(m2 + Op)2P

in which Pj is an extremum (either a peak or a valley) and the _j values

are like the times midway between a peak and a valley. The normalization
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used for X(t) makes E[X2(t)] = I. This is arbitrary, but convenient

in that it makesPxx(T) = RXX(T) . Assumethat the Tj's form a random

sequence. Then a given interval T, (t,t + T), may include any number

of Tj arrivals. Let:

N(s) = Numberof arrivals in (O,s)

N(t) = Numberof arrivals in (O,t)

N* = N(S) - N(t) = Number of arrivals in (t,S)

Then: N* = Even integer if X(t) and X(s) are both peak values or both

valley values

N* = Odd integer if one of X(t) and X(S) is a peak and the other

is a valley

Let p(j) = ppkPk+j be the correlation coefficient for extrema.

E[PkPk+j ] = m2(_1)j + 2 (j)p Opp

Then:

(E-l)

and:

Thus:

EEX(t)X(S)IN* ] -
N _

I [mp2(-1) + Op2p (N*) (E-2)2 2

mp + Op

RXX(T) = E[X(t)X(S)]

_ I [mp2(_ Op2(
2 + Op2 _ P[N* = j] I)j + j)] (E-3)mp j=O

To evaluate P[N* = j], let Aj = Tj+ 1 - Tj denote the interval length,

also a random variable. Let A be the event that t and t + T are in
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the same interval, or the event that t + T < Tj+ I when

Presuming that t is randomly located within Aj gives:

1 _ T__ for u > T
P[t < T + I - TItEAj, Aj = U = U

0 for u < T

Thus:

Tj _< t < Tj+ I.

(E-4)

P(A) = f PAj(u)P(AIAj = U,tEAj)du (E-5)

I

Assuming that the Aj s are identically distributed, then:

P(A) = P(N* = 0) = P(N* < 1) = f PA(u)( 1 - _)du
T

T

= P(A > T) - _ _ PA(u)du (E-6)
T

The Poisson process is most commonly used for counting arrivals.

It gives an exponential distribution for interarrival times, but that

is not sufficiently flexible for the present problem. Rather, assume

that the Aj's are gamma distributed and that there exists another related

Poisson process with mean rate _ and exponentially distributed inter-

arrival or wait times. Let M(t) = the number of arrivals in (0,t)

for this new process, and let every kth arrival of the new process

be an arrival in the original (TI,T2,T3,-'-) process. (The parameter

k can be chosen later to give a reasonable approximation.) Thus:

N(t) = i if and only if ik!M(t) < (i + 1)K

and:
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P(A _ T) : PIN(T) = 0 ] = P[M(T) < k]

k-1
i=0

= P[T K > T]
(E-7)

in which T
k

Then:

denotes the time of the kth arrival in the new process.

k-1 (x_)ie-_T ]d
(T) : " _-_ [ _ i'

PTK i=0 "

k-1 _T)i _T k-I
:_ Z ( e" Z

i=0 i! i=1

_T) k-1 -_T= _ k - I)! e
(E-8)

Now for k = 1:

-_T

PTI(T ) = Xe

_ I

So: mT1 = !_and a_1 _2

k and a2 = k

Thus: mTk = _ Tk _2

Now for large k, a normal approximation to PIT k > _] gives:

_ k

P[T k > T] -_ aT k

: _ (klx - _)
4E/x

: @ (.k_k.X_)

(E-9)

(E-IO)

Thus: P(A > T) = @ (_k _z)
(E-11)
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T pA(u)du _T P[M(_) < k - 1]Also:__ = _- 1
T

_ PIT k > T]= _-_- I -i

_T (k - I - ),_) (E-12)
-k-T ¢ k_-1"

An expression for P(N* = 0) can then be written as:

1¢_ _ (-k-k__ i_T-)P(N* = 0) = P(N* < I) = ¢ (k- ->,T)_ _ ¢

(E-13)

Assuming that t is in the interval ai, there are two cases which,

if they occur, will cause the event [N* > 1]. Either there are 2 or

> T, with Ai+ 1
more short intervals, Ai + Ai+ I < _' or Ai + Ai+ I

Thus:
< T and (Ti+ 1 " t) > T -Ai+ I"

P[N* > I] = P[A i + Ai+ 1 < _]

+ P[A i + Ai+ 1 > _,Ai+ 1 < T,Ti+ I
- t > T - Ai+ I]

and presuming Ti+ 1 - t to be uniform on (0,A i) gives:

> T, t > T - Ai+l ]
PIN* > I] = P[A i + _i+I < _] + P[Ai + Ai+1

= P[Ai + Ai+1 < _] + _ I (u) (v) (T-_U V)dudv (E-14)O _-V PAi PAi+I

Similarly, in general, for [N* > j]:

P[N* > j] = P[Ai + Ai+1 + "'" + &i+j

+_ _
0 T-V

(v) (_u v)dudv
(u) PA +Ai +jPAi i+l+Ai+2 +'" .

(E-15)
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Assuming that the Ai's are i.i.d, with the gamma distribution, G(k,k),

then Ai + _i+I is G(2k,k) distributed. Thus:

<T] = I -
k-1

(XT)je-kT

j=0 J!
(E-16)

P[A i + Ai+ 1 < T] = I -

2k-1
(AT)Je-kT

j=0 J!
(E-17)

and the pdf's are:

(u) - k(ku)k-le-kU
PAi (k - 1)!

(v) -
PAi+I+Ai+2+...+Ai+j

(E-18)

k(kv)Jk-le -ku

- (jk - i)! (E-19)

b_

Next the assumed G(k,k) distribution of A can be approximated by N(-_,_)
zk

to give:

P[A < T] -_@(T__k-/_k) : @(kT_k k)
(E-20)

and similarly for P[A i + Ai+l + ... + Ai+ j < T]:

P[A i + Ai+ I + ... + Ai+ j < T] --@(XT - jk) (E-21)

These expressions then give the first terms in P[N* > I] or P[N* > j].

Working with the inside integral of equation E-15 next, substituting

equation E-18 for pA.(u) gives:
l

oo T 1 k(ku)k-le-kU du

T-Vf PAi(U)(_)du : T - V T-VS_ (K- I)!

v)k- i f - 2)! du
T-V

(E-22)
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Now the integral in this expression can be recognized as

P[Z > T - V] for a random variable Z which is G(k - I, _) distributed.

Approximating this with a N(k - I k - 1
' _-2 / distribution gives:\

k- I
OO

F (u)(._.)d u k(-r - v) @(,v - "r k )
T_vPAi -_ k- I vrk- I/X

~ _(T - v) ¢(X(v - T) - k + 1)
k - 1 ,_k- I

(E-23)

Approximating (v) as N(_ k , _-_)gives:PA i+l+Ai +2+. •.+A i+j

(v)
PAi+I+Ai+2+.--+Ai+j

I exp [_lfv - jkl_)2]

A

exp[- (_v - jk) 2]

2_ 2jk

Now the double integral of equation E-15 can be written as:

(E-24)

A2 T k)2]@[Af (T - v)exp[-(Av - j (v - T) - k + 1]dv
(k - 1)2_ o 2jk V_ - 1

(E-25)

This can be written in dimensionless form by letting Av = u, v = u/A,

and dv = du/A:

(A_ - u)exp[-(u - _T - k + 1]du
(k- I)2_v_ o _- i

The equations necessary to compute P[N* = j] can be summarized as:

(E-26)

PIN* = 0] : @(.k_k._T) AT ¢(k _I -IATk - 1 -- ) (E-27)
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P[N* > j] = @(>,T - ,jk)

+
1 "r (u - jk)2]¢[u - AT - k + 1.]du

f (AT - u)exp[- 2jk _ i(k - I)2_2_-j-Co

P[N* = I] = I - P[N* > i] - P[N* = O]

(E-28)

(E-29)

P[N* = j] = PIN* > j - 1] - P[N* > j], j = 2,3,... (E-30)

To evaluate the usefulness of this model, an example case was

evaluated for a l-block psd with ml = 6.0, m2 = 9.0, for which a2 = 0.975

and q = 0.115. Rice's peak distribution was evaluated for this psd

to determine m2 = 1.4932 and 02 = 0.4576 and from simulations the
P P

extrema correlations were estimated as Pl = -0.8334, P2 = 0.5095, P3 = -

0.1888, P4 : -0.0248 and pj = 0 for j _ 5.

A value of k = 1000 was found to give a reasonable estimate for

the first two extrema of RXX(T), as shown in Table E-I. A larger value

of k could be used to better fit to the first extrema of RXX(T), but

at the cost of worsening the agreement for the later extrema. In addi-

tion, k = 1000 corresponds to a coefficient of variation for A

i

of VA /-K 0.0316, while the estimate from simulation was found to

be VA = 0.20, which corresponds to k = 25. This indicates that the

distribution for A required for the model to fit Rxx(T) is much narrower

than the distribution actually observed. It was also found that this

model failed to produce a decay in the estimated autocorrelation extrema

which was as fast as that of the actual autocorrelation function, as

shown in Table E-I. Neither could the beat effect, which is evident
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TABLE E-I

Comparison of RXX(T ) Extrema Values to Values

Predicted by Step-Type Model

RXX(T) Extrema Step-T_pe Estimate

-.94 -.91

•76 .82

-.51 -.74

•25 .68

l-block psd: ml = 6.0, m2 = 9.0

a2 = 0.975, q = 0.115
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in RXX(T) (see Figures 3.19-3.24 for example), be reproduced by this

model.

E.2 A Normal Approximation for the Distribution of N*

Rather than using equations E-27 to E-30 to find P[N* = j] it

is convenient to use a normal approximation for the distribution of

N*. Using the usual half-integer approximation for application of

the normal distribution to a discrete random variable gives:

PIN* > j] = 1 - ¢ (J + 0.5 - mN, )
ON*

j + 0.5 - mN, )
P[N* < j] = ¢ ( ON*

This can be written as:

P[N* = j] = B (E-31)

P[N* < j] : P[N* > j] - I - B
2

(E-32)

with:

¢(u) = I I - B _ I + B (E-33)
2 2

if

mN, : j

and

0.5
U -

ON*

Obviously mN* = j only at the time T =_kk, where _ is the arrival

123



rate in the Poisson process (for which every kth arrival

one N* arrival). If one neglects the probability that IN*

> 2, then this gives:

counts as

- mN* I

PIN* = jilt = jk] = (E-34)

PIN* : j + 11xT : jk] : P[N* : j - llxT : jk] - 1 - B
2

(E-35)

Substituting into equation E-3 gives:

_T

RXX(T) - 2 2 {(2B - l)m (-I)k

mp + Op

+ o_ [_p(__T_)+_
I- B

[p(_L_ I)+ p(_cL_ + I)]]} (E-36)2

Let RXX(TI) denote the value of the first valley of RXX(T). Using

an observed value of Rxx(T) along with Po = 1 and observed values

of Pl and P2' one can solve equation E-36 for 8. The value of u corre-

sponding to this first valley is then found from equation E-33 as:

u = @-I (1____B) (E-37)

Based on the results for Poisson arrivals it is reasonable to

_ u for j > I. From
presume that ON, grows like mV_N,. This gives uj v_

equation E-33 one then finds the B for use in equation E-34 for P[N* =

one must consider-_to give P[N* > j] and P[N* < j];j]. In general

i - _(3u) to give P[N* > j + I] and P[N* < j - I], etc. As j becomes

large, the values for P[N* = j + 2] = P[N* = j - 2] become significant

and must be incorporated into the model. In this study they were

included when they exceeded a value of 0.001. A reasonably good estimate
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of the overall decay of RXX(T) as T grows results from this model,

as shown in Figures E-I through E-7. However, the beat effect in Rxx(T )

is still not accounted for. In addition, the value of u or B used

to fit the model to a particular Rxx(T ) must still be related, if only

empirically, to some parameter of either Rxx(T) or the psd.

E.3 A Phase-Angle Approximation

An improvement to the step-type model was sought by considering

X(t) to behave harmonically in the neighborhood of an extremum. Partic-

ularly for a narrowband process and with the time lag T equal to a

small number of half-periods there is little uncertainty about how

many extrema have occurred, but there is uncertainty about the precise

location of the anticipated extremum. To illustrate, let the initial

time be at a peak and the second time be near the following valley:

X(t) = PI

X(t + T) _ VI coso

I
B

T

_p

with @ a random variable, I@I small and m0 = O. Then:

E[X(t)X(t + T)IX(t) = P1 ] = E[PIV I cosO]

Assuming P1 and V1 are independent of 0 gives:

E[PIV 1 cosO] = E[PIVl]E[cosO]

[-m_ + 2 1]E[cosO ]= Opp

(E-38)

(E-39)

(E-40)
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Assuming that Rxx(T) for E[X2] = i is approximately

E[X(t)X(t + T)IX(t ) : PI ] normalized by E[P2] gives:

RXX(T)
.m2 + o_p I

P E[cosO]

m2p + a_

The small @ assumption gives:

E[cosO] = 1- E@_22] + E4@_._4

equal to

(E-41)

(E-42)

and assuming @ is normally distributed gives:

2 4

° 0 o 0
E[cose] _ I 2 +-_- (E-43)

An attempt to quantify @ was made by relating it to T, the "time" between

extrema. For n half-cycles:

T : n_ + @ (E-44)

so that :

mT = nTT

2 2
aT = o0

° 0
(E-45)VT - n_

Thus, knowledge of VT would suffice to give a value for o@. Based

on the results for Poisson arrivals it seems reasonable to expect VT

to be approximately the same as VN, for the number of extrema in an

interval of length mT. An equation is available for E[N 2] (6,39),

in which N is the number of zero crossings of {X(t)} in (O,T):
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2 T
f(T - T)E[N 2] : E[N] + _ o

[1 - r2(T)] 3/2

in which:

(E-46)

r(T) = Rxx(T )

Mij = cofactor of (ij)th element of the covariance matrix of

the random variables X(tl),X(t2), X(tl) , X(t2) ,

with T = t2 - tI

Letting N* denote the number of extrema occurrences, the above

equation can be used to compute VN, because E[N 2] for {X(t)} gives

E[N .2] for {X(t)}. Empirical simulation results were also used to

compute VT for comparison with VN, computed using equation E-46. As

shown in Table E-2, the assumption that VN, = VT is not supported by

these results, although the trends of increasing V with increasing

bandwidth are quite similar. VN* was also computed from equation E-46

for E[N*] = I, 2, 3 and 4 for psd I of Table E-2. Table E-3 compares

these results to VT observed from simulations and also to the VT values

which would be required in order that equations E-41 and E-43 would

match empirical values of RXX(T). Again, the empirical VT values are

up to 32% smaller than the calculated VN values. Even more serious,

though, is the discrepancy in computing Rxx(T ). The VN values are

as much as five times larger than what one would need for VT to make

equation E-41 be correct. The serious discrepancy between empirical

VT values and the values required for equation E-41 indicates that
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some assumptions made in deriving equation E-41 must be in error.

In particular, empirical data from simulations indicate that the terms

[PV] and [cose] in the model are not independent, so the following

has been proposed to account for the correlation:

E[PV cose] = E[PV]E[cose] + ppv,coseOpvOcose (E-47)

For practical use, further simulation data were used to compute

an empirical correction factor, K, to account for the correlation:

_m2+ 2 o_ o_
P °PPl K I + m (E-48)

Rxx(T) -_ m2p+ o_ 2 8

P
Figures E-8 and E-9 show K

vs q and o6 vs q, respectively, for l-block

unimodal and smooth unimodal psd's; that is, psd types a) and c) of

Figure 3.1. Note that these data indicate that K and o_ for the smooth

unimodal psd's are significantly different from the values observed

for the l-block psd, for q > 0.3. That is, bandwidth seems to have

a much more significant effect on K and o_ for the smooth unimodal

psd than for the l-block psd.
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1

2

3

4

5

Table E-2

Comparison of VN, to VT for 5 Unimodal PSD's

l-Block PSD

6.0

4.5

4.5

3.0

3.0

9.0

8.0

9.0

7.0

I0.0

(Equation)
-_N* E - 46 -

.3325

.3838

.4100

.4355

.4687

_T (Empirical)

.2260

.2667

.2997

.3159

.3508

Table E-3

VN* Compared to VT for E[N*] = 1,2,3,4

(l-Block PSD, ml = 6.0, m2 = 9.0)

Equation)
V_.N*( E - 46-

_T(Empirical} VT (Required)

I .3325 .2260 .0651
2 .2329 .1754 .0846

3 .1884 .1529 .0913

4 .1616 .1380 .0922
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E.4 A Second Simplification to the Step-Txpe Approximation

Because of the results of the previous section, showing that VN.

VT, the following development was in an attempt to relate VN. to

VT. Assume a simple distribution for N* of:

P[N* = j] = B

PIN* = j - 1] = P[N* : j + i] - I - B
2

(E-49)

Then:

E[N*] = j

E[N*2] = j2 + I -

VAR[N*] = I -

VN* : _ - B/j (E-50)

Again assuming that A is gamma distributed, G(k,_), gives:

Recall the previous result for P[N* = o], equation E-27:

- _T elk ]P[,*=0]=_[k_._T.]_ (k- i) _I_-I_T

To fit the first extrema of RXX(T), set _T = k:

_1 k
P[N* = O] 2 k - i

(E-51)

(E-52)

@ [,_] (E-53)
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Empirical data for V A can be used to compute k as:

I (E-54)
k- 2

VA

A value for P[N* : O] can be computed from equation E-53, and a value

for B from E-49. Finally, a value for VN, = ,71-6 can be compared

to the value of VN* computed using equation E-46 for E[N* = I]. The

results of the comparison are summarized in Table E-4 for five unimodal

psd's. The relative agreement between the two calculations for VN*

indicates that equation E-46 might be used to compute VN, for a given

psd, from which VN,- _ could be used to estimate PIN* = j], P[N*3

= j - I], and PIN* = j + I] according to equations E-49. However,

a comparison of this approach with the results of the normal simplifica-

tion to the step-type model, Section E.2, indicates that the distribution

for N*, computed as outlined above, is not as sharply peaked as was

found to be required in Section E.2 for the step-type model to fit

the extrema of RXX(T). This is shown in Table E-5 in which the value

of B computed from E-49 is compared to the value computed from equation

E-36 for the five psd cases of Table E-4.
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PSD Case

Table E-5

Comparison of B Values

B, Equation E-49

0.862
0.838
0.831
0,824
0.811

B, Equation E-36

0.990
O. 969
O. 957
0.939
O. 890
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